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Introduction 

In sample surveys, response errors often 
constitute a sizeable portion of the total error 
associated with an estimator. Hansen, et al. [7] 
presented a mathematical model for survey obser- 
vations containing response errors. Response 
errors in a binomial population were studied by 
Hansen, et a1. [6]. They emphasized the differ- 
ence in the impact of uncorrelated and correlated 
response deviations on the sampling properties of 
estimators. Since then a number of papers have 
been devoted to the effects of misclassification 
on estimates and tests associated with multi - 
nomial problems (e.g. [1], [5], [10], [12]). 

Given the presence of response errors a 
questionnaire containing two responses for the 
variable of interest is sometimes used. For ex- 
ample "How old are you ?" and "When were you 
born?? be used to obtain two (possibly differ- 
ent) responses for the age of sample individuals. 
The objective of such a questionnaire is to ob- 
tain a value for each individual somehow superior 
to which can be obtained from a single question. 
The presence of two questions requires a rule for 
combining the two answers. 

There are a number of references dealing 
with the problem of combining estimators of a 
common mean if the sampling is from a normal dis- 
tribution. If we have a number of estimates 

= 1,2,...,k) normally and independently dis- 

tributed about the same mean, p, with known var- 

iances the minimum variance unbiased esti- 

mator of is the weighted mean, = E / W, 
=1 

where Wi = and W = . When the are 

unknown, they may be replaced by their unbiased 

estimators, . Properties of such estimators 

have been investigated by Cochran [2], Meier[11], 
Cochran and Carroll [3], Huang 9] and others. 

In this paper, we consider a finite universe 
in which individuals are classified into one of 
two classes, "1" or "0." The proportion of indi- 
viduals in class 1 is denoted by P, and the pro- 

portion of individuals in class O. denoted by Q, 
where P + Q = 1. We assume that a simple random 
sample of size n is drawn from this universe, and 

each individual responds to two questions that 
permit him to be classified into one of the two 
groups. These may be two questions on a single 
questionnaire or they could be questions on two 
different questionnaires. Due to the response 
errors, the two responses are not always the 
same. We consider the estimation of the popula- 
tion proportion P and the classification of 
sample individuals into the two classes. It is 

assumed that a super -population of responses 
exists for each individual. Let 

298 

p denote the probability that an individ- 
who belongs to class 1 answers 1 to 

the m -th question; 

denote the probability that an individ- 
ual who belongs to class 1 answers 0 to 
the m -th question; 

p denote the probability that an individ- 
mv 

ual who belongs to class 0 answers 1 to 
the m -th question; 

denote the probability that an individ- 
ual who belongs to class 0 answers 0 to 
the m -th question. 

We denote the response to the m -th question 
by sample individual i by Y and assume that the 

response probabilities are such that the sample 
responses are unbiased for the population propor- 
tions, i.e., 

E ( ) = pP + 
= P , (1) 

where the expectation is over individuals and 

responses. 

Classification of Individuals Given a Third -1 

Variable 

In the continuous variable case it is possi- 
ble to use the sample information to estimate 
weights by which the two responses may be com- 
bined (see Huang [9]). However, in the classifi- 

cation case additional information beyond that 
contained in the two responses seems to be re- 
quired for efficient combination. We assume that 
a third zero -one variable, X3, is available from 

the questionnaire. We also assume i) X3 has non- 

zero correlation with the individual true value 
and ii) the response errors in Y are independent 
of X3. Note that X3 may contain response error 

provided that the response error is independent 
of that in Y . 

Each individual response can be identified 
by one of eight 3- tuples, Zi 

= 
(Yu., 

Y21, X3i) 

(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), 

(0, 0, 1), (1, 0, 1), (0, 1, 1), (1, 1, 1). We 

identify these eight possibilities by a single 
subscript, j = 1,2,...,8 and let 

R 

a 

denote the probability that X3i equals 1; 

denote the conditional probability that 

the true value for individual i, 

equals 1 given that X31 is 1; 

denote the conditional probability that 
equals 1 given that X3i 0; 

denote the conditional probability that 
p.i equals 1 given case j, j = 1,2,...,8; 



P(j) denote the j -th conditional probability 
in the ordered arrangement of the Pj's, 

P(1) < P(2) < < P(8), J=1,2,...,8. 

= Y2i = X3i = j3), 

= 0,1; j2 = 0,1; j3 = 0,1; 

=P-where the F(j) are ordered by 
1 2 3 

the magnitude of j = 1,2,...,8. 

It is easily seen that ß(1 -R)+ a R = P and 

probabilities Pj are given by 
1 3 

P000 = 

P100 = Plvg2v(1-ß)(1-R) 

P110 = P1vp2v(1-ß)(1-R) 

P001 = 

P101 
= 

= g1vP2v(1-a)R 

P111 
= 

(1-a)R 

P011 

Further 

+ 
ß(1-R) 

+ 

+ g1uP2u (1-R) 

+ 
ß(1-R) 

+ 
R 

+ 
R 

+ 
R 

+ 
R 

2 
+ 

P3 

P5 

P6 

P7 

P8 

glvg2v(1-a) 

a) 

g1vP2v(1-a) 

the 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

We first develop a rule for classifying in- 
dividuals assuming the population parameters 
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known. We wish an assigned value for eachindi- 

vidual, where is either zero or one and 
A 

is chosen to minimize the expected squared 

error loss 

E - 

subject to the restriction that 

is an unbiased estimator of P, 

n 
E 

E = P 
i =1 

We propose the following rule: 

Rule: Order the such that 

the Mean of 

P(8) 
P(7) 

... >P> P(1) 
and define c to be the index such that 

8 8 
E F. < P and E F > P. 

j=c+1 ) j=c (1) 

Assign 
A 

= 1 , j =c +1, c +2, ...,8 

where 

µ.i(c) = 
1 , with probability A 

= 0 , with probability 1 -A 

A 
, j=1,2,...,c-1 µi(j) 

(4 ) 

F(c) F(8) - F(01)] . (5) 

Theorem: The Rule minimizes 

n A 

subject to 
n A 

E 
= 

P 
i=1 

Proof: The proof is by induction. We first show 
that a randomized rule applied to any additional 
case will result in a larger mean square error 
than our rule. We then assume that our rule is 
better than randomizing any r cases and show that 
it is also better than randomizing any (r +1 

cases. The details are contained in Huang 9]. 

The average mean square error of classifi- 
cation is given by 



n - = 
1=1 j=1 

8 
+ F(c)[A+P(c) 

- 
2AP(c)] 

+j 

(6) 

Estimation of Parameters 

In the practical situation the parameters 
of interest must be estimated from the sample 
data. We denote the eight sample proportions by 

P100' PO10' P110' P001' 101' 

(7) 

There are five independent parameters, say Plu' 

P, a, R, the remaining parameters being 

defined by identities and the unbiasedness re- 
strictions. Define e' = 

p2u' 
R)' 

f e = 
P100' P010' P110' P001' P101' P011) 

and 
P100' P110' P001' P101' 

then we may express the observed propor- 

tions as 
Y = f (e) + e (8) 

where E {e }=O. The covariance matrix of e is 
that of the multinomial with parameters f(e) . 

The Gauss -Newton method of estimation (see Fuller 
[4] Hartley [ 8]) may then be used to solve 
this non - linear regression problem. 

Example 

The Statistical Laboratory of Iowa State 
University in cooperation with the Statistical 
Reporting Service of the U.S. Department of 
Agriculture conducted a survey of 262 Iowa farm 
operators in September and October of 1970. In 
both of these interviews the respondents were 
asked to name the most important product of their 
farm operation. A good deal of information on 
the farm operation was also collected. We con- 
sider the variables 

= 1 if the ith farm operator reports 
hogs the most important product on 

the interview, m = 1,2 
= 0 otherwise 

X3i = 1 if the number of breeding hogs is 
equal to or greater than 30 for the 

ith farm operator, 
= 0 otherwise. 

The analysis is 

estimated parameters 

Newton procedure are 

summarized in Table 1. 

obtained by the Gauss- 

(PluP a, R ) = 

(0.9153, 0.9159, 0.3890, 0.6716, 0.3585). The 

The 
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estimated standard errors for these estimators 

are (0.0357, 0.0356, 0.0281, 0.0498, 0.0295). 

In this particular example the two methods 
of obtaining the information are two identical 
questions asked at different times. Therefore we 
would expect the values of plu and to be 

about the same. The estimates for these param- 
eters are approximately equal. 

Using the estimates the conditional prob- 
ability that the true value is 1 is estimated for 
each cell and is given on the fourth line of the 
table. On the basis of these estimated condi- 
tional probabilities we assign the estimated 

individual true value, as follows: 

= 1 if individual i belongs to case 
.1 

(1,1,1), (1,1,0), (0,1,1) or 
(1,0,1), 

= 1 for a random sample of of the 13 
individuals who belong to the case 
(0,1, 0), 

= 0 otherwise. 

The estimated mean square error of this 

classification, MSE(µ), is 0.0439. If we use 

only the first question the estimated classifi- 
cation error is 0.0659 and if we use the second 
question alone the estimated classification 
error is 0.0654. Thus the use of two questions 
and the auxiliary information has reduced the 
estimated classification error by about one third. 
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Table 1. Most Important Product (Example) 

(Yli' Y21' ) 
(0,0,0) (1,0,0) (0,1,0) (1,1,0) (0,0,1) (1,0,1) (0,1,1) (1,1,1) Total 

Obs. Frequency 116 8 13 32 29 3 8 53 262 

Obs. Proportion 0.4428 0.0305 0.0496 0.1221 0.1107 0.0115 0.0305 0.2023 1.0000 

Est. Model Prob. 0.4428 0.0366 0.0365 0.1257 0.1071 0.0245 0.0246 0.2022 1.0000 

Est. Cond. Prob. 

that = 1 0.0024 0.3120 0.3154 0.9887 0.0160 0.7552 0.7581 0.9983 

o o 0.3288* 1 0 1 1 1 

*Randomization probability 
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